If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4x^2-15x+10=0
a = -4; b = -15; c = +10;
Δ = b2-4ac
Δ = -152-4·(-4)·10
Δ = 385
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{385}}{2*-4}=\frac{15-\sqrt{385}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{385}}{2*-4}=\frac{15+\sqrt{385}}{-8} $
| 6x^2-9=51 | | d+-5.2=-8.2 | | 3x-x+4=42x+1 | | 120=0.2x | | -4.5=r-3.3 | | 11x+28x+7=180 | | (7)/(2x)+(6)/(4x)=(5x)/(4) | | 4x+18-5=41 | | -2x(3x-4)=-4x | | 22x+25-16x=85 | | 4x+50=10x-76 | | 5y+2y+7=-14 | | 6(-6x+6)=432 | | x9+16=20 | | 13-+7+2x-1=180 | | 0.2(5x+30)=1.0(x+6) | | 2x+36=7 | | x+5-2=6x+3x | | 10y-5y-11=93.55 | | (8x-73)=(6x-33) | | 55+15+0.25x=45+0.35 | | 9y-4y-12=69.95 | | 8(x+5)+6=46 | | 13y-10y-15=45.36 | | 1/6y-3=-15 | | 8x-10-4x=-1/2(12x-20) | | 5m+3/4=12 | | -25-9-8h=-25 | | 9−2w=19 | | 3(6x-1)=-165 | | 20-2/3x=40 | | -10(-2x+4)-2x=32 |